Problem A. 3

Use Equation A. 13 to simplify the expression $\delta(\sin x)$. Sketch this function.

Solution

Equation A. 13 is on page 426.

$$
\begin{equation*}
\delta(g(x))=\sum_{i=1}^{n} \frac{1}{\left|g^{\prime}\left(x_{i}\right)\right|} \delta\left(x-x_{i}\right) \tag{A.13}
\end{equation*}
$$

In this problem $g(x)=\sin x$. Find the zeros of this function.

$$
\begin{gathered}
\sin x=0 \\
x_{i}=i \pi, \quad i=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

Now evaluate the derivative of $g(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}(\sin x) \\
& =\cos x
\end{aligned}
$$

Therefore, by Equation A.13,

$$
\begin{aligned}
\delta(\sin x) & =\sum_{i=-\infty}^{\infty} \frac{1}{\left|g^{\prime}(i \pi)\right|} \delta(x-i \pi) \\
& =\sum_{i=-\infty}^{\infty} \frac{1}{|\cos i \pi|} \delta(x-i \pi) \\
& =\sum_{i=-\infty}^{\infty} \frac{1}{\left|(-1)^{i}\right|} \delta(x-i \pi) \\
& =\sum_{i=-\infty}^{\infty} \delta(x-i \pi) .
\end{aligned}
$$

This function is known as a Dirac comb. It's an infinite series of evenly spaced delta functions as shown in the following graph.

